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Abstract

Spacecraft ground control data systems are by
necessity sophisticated and complex.  One of the
challenges for system designers is to understand and
incorporate the needs of the users so that their systems
are easy to use and minimize user errors.  User-centered
design (UCD) can help achieve these goals.  UCD
techniques can be applied to the design of ground
systems to improve quality and functionality so that the
users can perform their work more effectively and
efficiently.  This paper provides a high-level survey of
UCD  efforts  at  NASA’s Goddard Space Flight  Center
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(GSFC).  The paper describes some of the techniques
that have been used and the benefits they have produced
via case studies.  The goal of the paper is to share
lessons learned from performing user-centered design at
NASA/GSFC with the wider ground systems
community and to provide pointers for interested
readers to find more detailed information.

Key words: User-Centered Design, Prototyping,
Cognitive Modeling, Usability.

Introduction

The ultimate impact of a system, no matter how
innovative its design or capabilities, depends on how
well its users interact with it.  Often, as systems become



more complex, they become harder to use.  An example
of this is mission operations software that requires
Spacecraft Control Team (SCT) members to monitor
thousands of parameters distributed across multiple
screens.

Modern ground control software systems employ
graphical user interfaces, expert systems, software
agents, and data visualization in an effort to alleviate
these problems.  However, each of these approaches
also introduces its own new demands on the users.  In
addition, new operational models that reduce the
number of staff or even eliminate full-time operations
(i.e., “lights-out” operations) provide new challenges
and can significantly increase the workload for the
remaining limited on-call staff.

In his seminal book Designing the User Interface:
Strategies for Effective Human-Computer Interaction,
Shneiderman1 notes that the degree to which a system
meets the needs of its users can be measured via
attributes such as:

•Time to learn
•Speed of performance
•Rate of errors by users
•Retention over time
•Subjective satisfaction

To optimize these attributes of a system, the design of
the system, as well as the process of designing the
system,2 must focus on the users and their needs.  This
is known as user-centered design (UCD).

The goal of UCD is to ensure that systems are
designed with consideration of their users' capabilities
and limitations.  UCD considers the software, hardware,
users’ tasks, environment, and all their interactions.
Properly employing UCD will increase the usability of
those systems, making them easier to use, increasing
user satisfaction, and reducing error rates.  UCD
concepts come from many fields, but most commonly
from human factors engineering.  In addition, UCD has
an ever-increasing impact on overall systems design as
the percentage of the software code that is dedicated to
the user-system interface increases.

Various UCD techniques and activities are used at
NASA/GSFC to design high quality mission operations
software and advanced control center environments.
Table 1 lists a sampling of some of those UCD
techniques.  Table 2 lists some projects that have
benefited from  the application of those techniques.

Which techniques are used and when they are used
depends on the type and size of the project (e.g., style
guides are most useful for large development teams to
control consistency, while expert evaluations are
equally effective for any size project). Likewise, the

Table 1:  UCD Techniques Used at NASA/GSFC
•User design working  (focus) groups
•Cognitive modeling
•Education of software designers
•Expert evaluations
•Rapid software prototyping
•Scenario-based design
•Task analysis
•Usability testing
•User interface guidelines, style guides and

standards
•Workstation and control room design

Table 2:  Projects employing UCD
•EOSDIS
•Data Distribution Facility
•Desktop Satellite Data Processor
•Hubble Space Telescope
•Spacecraft Emergency Response System

(SERS) for SMEX and MIDEX missions

positive effects of some techniques are maximized when
they are used at certain phases in a project's lifecycle
(e.g., task analyses are most useful when performed
before any new software or hardware is developed).
Similarly, the type of project (R&D vs. deployment)
influences technique selection.

The remainder of this paper describes several of the
UCD techniques that have been successfully used at
NASA/GSFC in the design of software.  Unfortunately,
there is only space to discuss a few of these techniques:
cognitive modeling, software rapid prototyping, and
usability testing.  Along with the descriptions are
examples of how these techniques were used on actual
projects and the positive results of using these
techniques.  The references cited provide opportunities
for further learning about UCD.

As you read through these different techniques, you
will note common themes and goals.  You should also
note that these techniques are complementary and, when
used together, produce an even more usable design.

Cognitive Modeling

An important goal of user-centered design is to
understand the users and how they interact with the
systems that they use.  Using both syntactic knowledge
(knowledge of procedures, such as pressing the “delete”
key to erase a character) and semantic knowledge
(knowledge of a domain, such as a theory) gained by



experience with a system, users build a mental model of
how that system operates.  McGraw3 defines a mental
model as an organized set of domain concepts, their
relationships and functionality.  In computer-based
systems, a user’s model of how to perform a task is
directly influenced by how she perceives those data
being presented by the computer.  For example, let’s say
that in order to successfully accomplish a task, a
particular switch on a spacecraft must be open.  The
spacecraft controller must not only know that the switch
is to be open, but also be able to interpret the current
state of the switch as displayed on the computer’s
screen (perhaps displayed graphically as a circuit
diagram or simply as a “yes/no” field).  Also she must
know how to tell the computer to send the command to
open that switch (perhaps via a typed command or by
clicking on a button).

The task flows more smoothly when the data
displayed and the method of interaction match the users’
expectations of how the system will operate, that is,
their mental models.  Thus, it is important that the
designer incorporate the user’s model of the task into
the design of the computer’s interface so that there is no
disconnect between what the operator thinks she sees
and does, and what the computer actually is presenting
and executing.  This problem is compounded by the fact
that, to a certain degree, all users possess somewhat
different mental models.

In  contrast with mental models,  a cognitive model is
a  researcher’s attempt to represent conscious and
subconscious mental processes and outcomes.  A
cognitive model is a theory-based, graphical
representation of inferred relationships between
hypothesized components of human thought.  These
overt models of the mind may be qualitative or
quantitative, specific or general, and they are typically
embedded in graphical models of human performance
(e.g., Wickens4).  Most cognitive models encompass the
basic constructs of human information processing:
sensory processing, perception, short- and long-term
memory, and analytic processes such as problem
solving and decision making.  Different models vary in
their level of detail and, sometimes, in the theory that
underlies their depiction of the flow of information and
control within the model.  For detailed treatments of
cognitive models in the psychological and human
factors literature, see Best,5 Eberts,6 Newell,7 and
Solso.8

Cognitive models aid analysts in getting beyond the
behavioral aspects of human activities to their
underlying goals, objectives, and thought processes.
Cognitive modeling provides a theory-based framework
for cognitive task analysis; which documents
operational decision points, information requirements,

and the analytic processes followed in making decisions
on the basis of available information, incomplete and
uncertain though that information may be.  Cognitive
task analysis provides critical input to user-interface
design and evaluation.  Such models serve as
frameworks for investigating and documenting the role
of human information processing in operational settings.
They help in the process of understanding the problem-
solving and decision-making activities performed in
current spacecraft ground control environments.
Sources on cognitive task analysis include Redding9;
Roth and Woods,10 Roth, Woods, and Pople,11 and
Schlager, Means, and Roth.12

In a specific operational environment, early and
continuing cognitive modeling and cognitive task
analysis can help to identify analysts’ information
requirements and can support the design of automated
job aids.  When a job or position is being defined or
redefined, it is worth the effort to document cognitive
tasks and information requirements as a basis for the
design of user interfaces, position manuals, and training
programs.  When a change is contemplated for a
computer system, design of user interfaces and
operational procedures that are based on a thorough
cognitive task analysis is likely to yield a more usable
and operationally suitable product than will result from
design that gives low priority to human information-
processing issues.  A design’s support for cognitive
capabilities and compensation for cognitive limitations
should be evaluated throughout the project’s lifecycle.

Example
At NASA/GSFC, cognitive modeling has provided a

basis for developing an automated approach to
predicting the demands imposed on operators’ cognitive
resources by various aspects of user interfaces.
Modeling the cognitive demands imposed by user
interfaces led to development of a series of Computer-
Human Interaction Models (CHIMES) prototypes.
Early CHIMES prototypes demonstrated the feasibility
of assessing the cognitive demands imposed by text-
based user interfaces.  The underlying model included a
functional hierarchy of operational activities, from
subtask to mission, and a set of cognitive attributes
associated with each level of the functional hierarchy.13

A demand analysis using CHIMES could be performed
early and iteratively throughout the design and
implementation of a textual user interface.  CHIMES
evolved into a tool for checking a user-interface design
both for internal consistency and for compatibility with
design rules.14

The early CHIMES methodology and toolset were
applied in an analysis of the user interface to the
Planning and Resource Reasoning (PARR) tool, a



scheduling aid developed by the Bendix Field
Engineering Corporation.15  The purpose of the analysis
was to evaluate the PARR user interface from a human
factors perspective in order to improve its ability to
support efficient, effective scheduling of spacecraft
events by the Earth Radiation Budget Satellite (ERBS)
scheduler.  Analysts observed and interviewed the
ERBS scheduling operator about her functions and tasks
and examined the various paper-based job aids that she
consulted in building the weekly schedule.  The
scheduler’s job was modeled as it was currently being
done, in a largely manual mode, and as it could be done
with the aid of the PARR tool.  The analysis permitted a
comparison between the largely manual job and the
aided job, showing that task demands on the ERBS
scheduler were significantly lower after the introduction
of the automated scheduling aid.  The analysis identified
several PARR displays that could benefit from some
redesign.

In the current spacecraft ground control environment,
with its emphasis on increased automation to reduce
mission costs, cognitive modeling and cognitive task
analysis can provide inputs to decisions on system
design.  It cannot be assumed that partially or fully
automating a function will eliminate the need for human
involvement in mission operations.  For the success of
lights-out automation, it is essential to define the
cognitive tasks that operators and analysts currently
perform, many of which are not fully documented in
existing procedural manuals.  If fault detection and
resolution are to be automated, cognitive models of
humans performing those tasks can provide valuable
guidance.  Cognitive issues in lights-out automation are
under investigation from several conceptual and
empirical perspectives (e.g., Mitchell, Thurman, &
Brann,16 Murphy & Norman,17 Truszkowski18).  These
investigations are likely to lead to the development of
cognitive models of the combined cognitive system, that
is, the cooperative activity of intelligent software agents
and human analysts, where mutual understanding will
be critical to success.

Software Prototyping

Traditional software development is a very formal and
structured process.  This process is generally
represented by the "waterfall" model that starts with
requirements analysis and is followed sequentially by
design, development, testing, operations, and finally
maintenance.  For this approach to be successful, all of
the detailed requirements must be known and
documented prior to the onset of design.  Any missed
requirements or functionality tend not to be discovered

until late in the product's life cycle during testing or
even after deployment.  Changes at these points tend to
be very time-consuming and costly.

Software rapid prototyping can help alleviate this
problem.  A rapid prototype is used to simulate a
system’s functionality and user interface and can serve
as a model for the technical demonstration of a system.
UCD is specifically concerned about understanding the
needs of the end user in order to get a better
understanding of requirements early on in the project.
The most common reasons for software prototyping are
to gain a better understanding of the users' requirements
and to allow the developer to confirm that a specific
approach will accomplish the needed functions with
adequate system performance.  Generally, prototyping is
iterative and leads to a more cyclic design approach.

Prototyping generally takes one of two forms:
“throwaway” or “evolving.”19  A throwaway prototype
is usually discarded once it has served its purpose.  For
evolving prototypes, the functionality is added and
improvements are made until the prototype becomes the
operational system.

Alternatively, Pressman20 classifies prototypes into
three types - a model, a working prototype, and an
existing program.  The model, either paper- or
computer-based, is a mock-up that depicts the user
interface in order to convey a sense of look, feel and
functionality of the system.  The working prototype is
an implementation of specific functions of the system.
In the case that a system is already in place and meets
all or most of the needed functionality, it can serve as
the basis for prototyping additional functions or
improving on existing functions.

According to Pressman, an important factor in rapid
prototyping is working with the user to define and agree
on the scope, purpose, and nature of the prototype -
particularly whether it is to be discarded or turned into
an operational system.

Boar21 describes factors, such as the characteristics of
the project and the user as well as the application area
and the complexity, that can be assessed to determine
whether a software project can benefit from prototyping.
Once it is decided that a prototype is needed, the form
of prototype should be considered.

Example:
The overall purposes of prototyping in the Earth

Observing System Data and Information System
(EOSDIS) are:

•To address risks to development
•To enable technology transfer into the system and

out to the global change research community
•To reduce long term costs through evolution.



The specific goals are to better understand the needs
of the user community and to mitigate identified risks.
For EOSDIS, multiple approaches are used.  Most
prototypes investigate system functionality that will
later be infused into the EOSDIS Core System (ECS).
All of the prototypes start out as intended throwaways,
but some that show promise for infusion are evolved to
the point that they can be integrated into the system.

One prototype, known as EOSDIS Version 0, began in
the early requirements definition phase of ECS to show
proof-of-concept for interoperability among distributed
systems and to better define interoperability
requirements to be levied on the ECS.  After a
successful demonstration in 1992, this prototype
evolved in nature and purpose as functionality was
added.  It started as a prototype to define requirements
and later evolved into a prototype that served as a
demonstration of technical capabilities, and then to an
operational system.  Every six months during its
evolution, an on-line, pseudo-operational version of a
complete end-to-end system was evaluated by user
community representatives.  These representatives
stated their likes and dislikes, gave recommendations on
future improvements, and as a group they agreed on the
priorities of functions to be added in the next phase.

While Version 0 evolved, the ECS contract was
defined and an end-item deliverable contract was
awarded.  The development was to follow a formal
systems engineering lifecycle process.  However a few
components that involved end-user interfaces were put
on an incremental track with the intention of getting
early user feedback on "uncertain driving requirements."
The Incremental Track Design process involved various
mechanisms to elicit user feedback on prototypes.  The
key mechanisms included Evaluation Packages,
Prototype Workshops, a Client Design Working Group,
and Client Workshops.

Evaluation Packages (EP) were a delivery and
evaluation mechanism for incremental and other
prototype developments.  The goal was to maximize
visibility for end users, data archive staff, and NASA to
get feedback and acceptance.  The key challenge of this
process was to provide just the necessary amount of
structure to enable an evaluation without creating an
administration overload.

Prototype Workshops (PW) were typically held after
each EP so that each PW included one EP plus other
selected prototypes that appeared particularly
promising.  The PW was held to allow “tirekickers,”
data archive representatives, and NASA to review all of
these latest tools.  Surveys were conducted during the
PW to evaluate each of the presented prototypes.

Because there were so many functions for which the
designers needed more insight, and the fact that EPs and

PWs took time and resources to pull together, a Client
Design Working Group (CDWG) was formed to
generate scenarios, workflows and models (paper and
computer mock-ups) for the remaining client
functionality.

Some prototyping efforts were more successful than
others.  The Version 0 system was very successful and
is still operational today.  The CDWG also was very
successful and ensured buy-in of the end-user
community.  Incremental Track prototyping succeeded
in identifying broad issues in the overall system
architecture.  It highlighted difficulties in installing and
maintaining distributed systems.  It also helped the
project identify the threshold of the tolerance of the end
user's burden to gain access to the system.  Currently,
the Version 0 system is being augmented to support
ECS functionality and will serve as the end-user
interface for EOSDIS.

Usability Testing

Usability testing is one method of evaluating how well
a system meets its users’ needs.  Usability tests can be
performed at any stage of a product’s lifecycle, from the
paper prototype stage to operations.  The main
characteristic of a usability test is that the proposed user
of the system is observed while performing a series of
tasks with a fully functional system or with either a
software or paper prototype.  It is not a demo to the
user, but a chance for the user to work with the system
“hands-on.”

The tasks usually include those that will be frequently
performed or that are most critical.  While the user
performs these tasks, many types of data are collected.
Some of the quantitative measures include:

•Time to complete a task
•Number of errors
•Number of times help is required
•Time to locate specific information

Some of the qualitative measures include:

•Observed frustration
•Participants' comments
•Ratings
•Severity of error

These data are then analyzed to determine where the
system is making it difficult for the user to complete the
tasks.  Suggestions for changes to the system are then
presented to the project development team.
Alternatively, developers can act as observers of the



actual tests to get more direct user feedback and gain
insight into the usability testing process.

Usability testing is one component of usability
engineering,22 which takes a full life cycle approach to
managing the user interface.  Usability testing can take
many forms.  Ideally, usability testing should occur at
regular intervals or at major milestones in a project’s
life cycle, especially for large, complex systems.  This is
known as formative usability testing.2  Alternatively, a
system may only be tested as part of a final deliverable.
This is what happens for many systems due to funding
constraints or the late inclusion of a usability engineer
on the project team.  This is known as summative
testing.2  The disadvantage of this latter approach is that
the results of the testing often arrive too late to be
incorporated into a revised design.

Usability testing can be done in a formal lab, with a
one-way mirror, video recorders, audio recorders,
screen-capture software, and an intercom system;
however, a “discount” 22-24 approach to usability testing
typically is used at NASA/GSFC.  In the discount
approach, the tests are often run in the users’ actual
offices where they complete tasks on their own
computers or with paper prototypes.  The observer(s)
sits beside the user and records data either on paper or
on another computer.  Even with this “low tech”
approach, designers gain valuable information that
allows them to greatly improve their applications.

Example
Usability testing for the Hubble Space Telescope

(HST)  exemplifies a discount approach.  In this project,
the control center software is currently being
modernized.  Throughout the development cycle of the
windowing graphical user interface, various usability
tests were conducted.  In one of the first tests, three
users sat at a computer and completed a series of tasks
while the observer took notes.  The tasks included (1)
creating a new real-time page (real-time pages are
graphical pages that can contain hundreds of updating
data points, referred to as mnemonics, that are used to
monitor the HST’s health and safety), (2) adding
components (e.g., alphanumeric fields, stripcharts,
labels) to a page, (3) modifying characteristics of the
components, and (4) saving the page.  After observing
the users, the observers identified several problems that
needed to be addressed.  The problems were not critical,
but the design could be greatly improved if they were
fixed.  Examples of some of the problems included:

•Inconsistencies (e.g., changing the color of
mnemonics was done differently in two different
dialogs)

•Lack of prompts to guide the user (e.g., no

confirmation message when logging in, no
indication of how to enter a search string)

•Lack of use of standardized user interface
conventions (e.g., use of gray to indicate those
menu items not currently availability)

•Dispersion of related functions (e.g., information
that was related and worked together was separated
into two windows)

•Grouping of unrelated functions (e.g., editing of
two components was done in the same window and
it was thought the options worked together when
they were, in fact, independent)

•Missing features (e.g., ability to modify several
components at one time, ability to zoom to see
greater detail).

The feedback that was gathered from the users and the
suggested design modifications were reviewed with the
developers.  In some cases, the suggested changes were
accepted and could be easily implemented.  In other
cases, further information from the users was requested.
Some concepts were modeled using a graphics package,
and together with the developers the design was
modified.  Many of the problems in this initial study
have been addressed; and, in follow-up meetings, users
reported that the design was much improved.

Another example illustrates usability evaluations
conducted with paper prototypes.  Here the users were
shown a paper mock-up of the tool and were asked to
verbally describe how they would use it.  This technique
of capturing the user’s thoughts is called protocol
analysis.25  One study evaluated a tool intended to warn
flight operation controllers of anomalous conditions via
the display of mnemonics.  The results showed that
users could easily understand the tool.  However, it was
found that a particular action of the tool was not
anticipated and did not match the user’s mental model
of the system.

More specifically, the tool represents an anomalous
condition by displaying a red light for the sub-system
that contains the out-of-limits mnemonic(s).  The
system then allows the user to click on the light to
display a second level indicator that shows which sub-
sub-system contains the mnemonic(s).  The users liked
the concept of seeing the warning light and then
clicking on it to get additional information pertaining to
the anomaly.  However, they had other ideas for what
additional information should be presented.

Instead of seeing the sub-sub-system, the users
preferred to get further detail on the mnemonic (e.g.,
current value, and highest and lowest values).  Once
they had more detail on the mnemonic they would then
like to have additional options for further analysis, such
as the ability to plot the most recent data or examine the



limits of the mnemonic.  This simple evaluation with a
paper mock-up only required about 15 minutes of each
of the operators’ (5 total) very valuable time.  Yet, in
this short period of time, a problem with a critical
component of the software was identified and a solution
recommended.  Early identification saved the developer
considerable time in code development and thus
provided a large return on investment.

Conclusion

This paper has provided just a glimpse at user-
centered design and its positive effects on the design of
ground data systems at NASA/GSFC.  You are
encouraged to see the large set of papers and books that
provide more details on the UCD techniques referenced
in this paper, as well as books on other techniques listed
in the introduction26-29 and some more general UCD
references.30, 31  Also, you may wish to visit the Web
sites of some of the larger professional societies
focussing on UCD:

•The Human Factors and Ergonomics Society
(HFES), http://hfes.org/

•The Association for Computing Machinery Special
Interest Group on Computer-Human Interaction
(ACM SIGCHI), http://www.acm.org/sigchi/.

•The Usability Professionals' Association (UPA),
http://www.UPAssoc.org/.

You are invited to contact the authors via email to
learn more about user-centered design or to discuss the
material presented in this paper.
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